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of normal sculpture. As far as I have seen and read, the range is unique
in this systematic tripartite arrangement of normally and glacially sculp-
tured forms. A fuller account of the range will be prepared for the
Bulletin of the American Geographical Society.

DEFINITION OF LIMIT IN GENERAL INTEGRAL ANALYSIS
By Eliakim Hastings Moore

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO
Preeted to tbe Academy, November 8, 1915

1. General Analysis. The problem of Science is the organization of
and the study of the interrelations amongst the objects and phenomena
of Nature. Analogous objects or phenomena are grouped into classes.
In the progress of Science, with the discovery of new objects or phenom-
ena or interrelations, the bases of classification initially of necessity
superficial become more fundamental; thus in Physics, Electricity and
Magnetism and later Light merge in Electromagnetism.
Mathematics with its source in Nature progresses in similar fashion.

Hence, remembering that the objects or phenomena of Mathematics
may be theories (doctrines), we may enunciate the following heuristic
principle:

The existence of analogies between central features of various theories
implies the existence of a more fundamental general theory embracing the
special theories as particular instances and unifying them as to those
central features.

After the development of such a general theory, the fact that the
various theories are instances of the general theory implies as an obvious
consequence (and accordingly eclipses in importance) the analogies
between the central features of the various theories. In illustration of
the heuristic principle may be adduced the theories of General Analysis
mentioned below.

Analysis is the branch of Mathematics devoted to the classification
of and the study of the interrelations amongst numerically valued
functions. A (single-valued) function r or r(p) is a table (or rule or
process) assigning to every element or member p of a certain class or
range 3 a definite element q of a certain class Z0. It is numerically
valued in case the functional values q, = r(p), are numbers real or
complex. Although not always numerical, the independent variable
p of a function r considered in a theory of Classical Analysis is always
of specified nature; e.g., the variable p may be a curve or a numerically
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valued function, r(p) being the length of the curve p or the average
value over its range of definition of the function p. However, the nature
of the element p is not fully specified in Frechet's theory1 (1906) of sets
of elements p of a class $ and of continuous functions on such sets.
This general theory has as instances the theories for the linear con-
tinuum $ and for the n-dimensional space 1 initiated by G. Cantor
and for the class 3 of continuous curves due especially to Arzel3.
Fr6chet conditions his class $ by a definite but undefined relation L
(the concept of convergence of a sequence {p,n} 'p p2,, *,
pn, . . ., of elements p to an element po of $ as a limit) possess-
ing certain properties; these properties of the relation L are in the
special theories immediate consequences of the current definitions of
the relation L in those theories.
Those theories of Analysis in which at least certain of the functions

involved are on a range 1 of elements p of a nature not specified, or at
least not fully specified, we may designate as theories of General Analysis.
Thus, Frechet's theory with basis ( 3; L) is a theory of General Analysis,
as is likewise my theory2 (1910) of classes of functions on a general
range $.
A general range 3 is an arbitrary particular range $ with abstraction

of its particular features, e.g., Fr6chet's range $ with abstraction of
the feature L. Properties of functions, classes of functions, etc., on or
connected with a general range $ (whose definitions accordingly involve
no particular features of the range $3) are of 'general reference,' while
others are of 'special reference.' Thus, relative to a linear interval

5, the continuity of a function is of special reference, while the prop-
erty of uniformity of convergence of a sequence of functions and the
property of the class of all continuous functions that the limit of a

uniformly convergent sequence of the class belongs to the class are
properties of general reference.

2. General Integral Analysis. A theory of General Analysis involving
a numerically valued single-valued functional operation J (of the type
of definite integration) on a class 9 of functions K whose range of
definition involves a general range ¶ we may designate as a theory of
General Integral Analysis. Thus, my theory3 of linear integral equa-
tions is a theory of General Integral Analysis. This general theory has
as instances the classical theory due to Fredholm and Hilbert-Schmidt
for the case of continuous functions, and other classical theories.

3. Definition of Limit in General Integral Analysis. In a subsequent
note I shall indicate a general theory of linear integral equations having
as instance Hilbert's theory of functions of infinitely many variables.
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The integration process J,undefined in my earlier theory, is in this theory
defined. Its definition turns on the definition of limit which I wish to
explain in this note.
Byway of example consider on the range $m (p = 1, 2, 3, . . .

n, . . ) a numerically valued function a(p) with absolutely
convergent sum Ja, = a(l) + a(2) + a(3) + . . . Ja is the limit
in the classical sense, as n increases without bound, of Ja, = a (1)
+ a(2) + . . + a(n). Here the definitions of J,a and of limit
are of special reference. However, taking (not the first n but) any
finite set o say of n elements p: pi < 2 < .. < p, of the range 3m,
we secure definitions of J,a, = a(pJi) + a(p2) + . . + a(p), and
of limit which are of general reference.

Indeed, consider at once a general class $ and a numerically valued
(possibly many-valued) function F on the class e of all finite sets r of
elements p of the range i. (In the example cited F(r) = J,a). We
say that the number a is the limit as to a of the function F(o), or that,
as to a, F(o) converges to a, in notation:

L F() = a, (1)

in case for every positive number e there exists a set o, (depending on
e) of such a nature that for every set a including a I F() - a \I e,
in symbols:

e:: :a< = .. F (a)-'a-| e. (2)
If for a set a including o, F(o) is many-valued the understanding is
that the final inequality holds for every value of F(o). (The notation
e denotes a positive number; the notations n, m used below denote posi-
tive integers.)
The L, of (1) is a single-valued functional operation of the type of a

definite integral, in that it reduces every function F(r) of the class
of all functions convergent as to a to a number a. Accordingly, the
class 3 being general, this definition of limit (even apart from itsi use
in the theory mentioned) belongs to General Integral Analysis.

In order to obtain definitions of various modes of convergence in case
the function F involves a parameter we notice the equivalent forms
(3, 4, 5) of the definition.

n:=:Sa, 9 aI..::F(I)-a\Sl/n, (3)
*(4)
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viz., there exists a sequence {am}:r1, 2, .. . . , of sets a of
such a nature that for every n and set o including a-n F(o) - a

1//n.
3 {m}- nn D :am,, 9 o('"-.a .|F(<)-al_ 1/I, (5)

viz., there exists a sequence { o} such that for every positive integer
n there exists a positive integer mn (depending on n) such that for every
set U including an I F(a) - a If 1/n.
Now let the function F involve a parameter u on a range U and sup-

pose that F(a, u) converges as to a for every u of U; the limit is a
single-valued function, say p, of u, in notation:

L F (, U) = (u) (U), (6)
that is,
U.:= :.--.a{.})-3n: ~ m: ,a o^,U . D .IF(a,u)-O(U) 1 l/X, (7)
viz., for every u of U there exists a sequence { um} of sets o (depending
on u) such that for every positive integer n there exists a positive integer
mun (depending on u and n) such that for every o including aum,n
F(a, u) - o (u) I<.1/n.
The convergence is semiuniform over the range U in case a single

sequence {am} is effective as the sequence { un} for every u of U, and
it is uniform in case moreover for every n a single positive integer mn
is effective as the positive integer mun for every u of U, that is, the
notations:

L F (U, u) = so (u) (u; semiunif.); (8)
L F (U, u)=P (u) (u; unif.), (9)

have the respective meanings:
{(} u.: ':.n:':3 m,,, a o='"" . . I F (O, )-, (u) 1_ 1/n; (10)
a{<r~} n. -aM:.an» a U::): .M . F (,u)- (u) 1/n. (11)
If v is a numerically valued single-valued function of u on U, we

define semiuniformity and uniformity of convergence relative to v as
scale function over the range U, in notation: as in (8, 9) with the paren-
theses replaced by (u; semiunif. v (u) ), (u; unif. v (u)) respectively,
by replacing in the definitions (10, 11) the final 1/n by I v (u) I/n. Thus,
semiuniformity and uniformity are absolute, i.e., relative to the scale
function v(u) = 1.
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The definitions of uniformity (absolute and relative) may be simpli-
fied by omitting 'I m,n ' and replacing ',' by 'O,'. This form
of definition is suggested directly by (4); the more complicated form
(5) with its redundant existential feature m, serves however to suggest
the definitions of semiuniformity (absolute and relative), and relative
semiuniformity proves to be of importance in the applications.
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The Variations and Ecological Distribution of the Snails of the Genus lo. By
CHARLES C. ADAMS, New York State College of Forestry, Syracuse, N. Y.
Second Memoir of Volume 12 of the Memoirs of the National Academy
of Sciences, Washington, 1915. 1-184 p., 64 pl.

Io is a large gilled snail which lives only in the 'Tennessee River system.
It is extremely variable, shows a remarkable distribution in the streams and in
this it appears to be related to the physical history of the drainage. Through-
out this Memoir emphasis is placed upon relating the changes of the animals
to the changes in the environment. The general natural history of the
snails is briefly summarized, the local races are described and the localities
from which the collections studied were secured is given in detail. The shells
were grouped in convenient classes for descriptive purposes. The diameter
of the shell, its degree of globosity, and the degree of development of the
spines were determined quantitatively. These qualities are discussed by
streams and drainage systems. In the parallel flowing Powell, Clinch and
(North Fork) Holston rivers, the shells are smooth or with low spines in the
headwaters, and down stream have longer spines. This condition is quite
remarkable and no previous detailed investigation has been made of a prob-
lem of this character.
The development or evolution of the gross environment is discussed. The

author states "It is considered that a knowledge of the development and
structure of the environment is as essential a part of the problem as is the
development and structure of the animals themselves." An outline history
of the Tennessee drainage is given. In the past this family of shells was

thought to have originated in the Northwest (Laramie) but the author sug-
gests an alternative hypothesis, that they originated in the southeast.
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